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ABSTRACT

In this paper we analyze the steady—state bifurcations from the tr ivi ~d

solution of the reaction—diffusion equations associated to a model chemica l

reaction , the so—called Brusselator . The present analysis concentrates

on the case when the first bifurcation is from a double eigenvalue. The

dependence of the bifurcation diagrams on various parameters and perturba-

tions is analyzed . The results of Technical Sunm~ary Repor t #1844 are

invoked to show that  fur ther complications in the model would not lead to

new behavior .
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S I G N T F T C A r ~CE A tI D EXP LAN ATI (~~

I~ i - ;  ~‘ L  i ’i’ d that- ~at - t~. r r  f o r mat i o n  by bio 1o~~i~ - ’ i  - ‘ ‘

. I i t . 1 t~~ re~ ‘~~ted h i f u r ca t  ions of the r e a c t i o n —d i f f u~ ior  ‘~~~~- ,r - ~~v rr 1—

:ncj the concent ra t ions  of the variou s chemicals preser t i~~ :~~~
• • . -n . r h ’ .

f u l l  complexi ty  tha t these equations can exhibi t  is f a r  f r  ~ ~~r~~~~~ - r  ~~~~~~

Here we take an i n i t i a l  step i n  this direct ion by a n a ly z i r ~ t } - . ‘ r  - s  ions

of a model chemical react ion , t n r  so—called tn —molecular  r~~dr , ‘ .

and Pn igogine , at and near a dcuhle eigenvalue . The d, pr ~ , ’r ’ r  ~

system on var ious parameters ~ rid i t s  Sens i t i v i ty  to I r - r t : r }  i t -  I , r ~~ i s  Iso

studied .

This paper d i f f e r s  from ~~r l i e r  work in several po in t s .  F’ i r ’  ‘ we apply

the notion of un iversa l  u n f o l d i r -ig s (developed in MRC T~ c :hn. - n i  “~~i r f  P~ pOrt

#1844) to show that  no q u a l i t a t i v e l y  new behavior would r e su l t  F ’ ~ ~n ’  addi-

tion of f u r t h e r  perturbat ions i n  the model. Second , we show t . hs r  - ‘:rn.mr-try

plays  a dominant  role in de te rmin ing  the behavior of the system , i fac t  that

seems to have escaped notice. F ina l ly  we have been able to a t t a i r  a h iqher

level of r igor than prev ious work on double eigenvalues .

The respons ib i l i ty  for the w o r d i n g  a rxi views expressed in  t h i s  d’ i 1. t  ive
summary lies with MRC , and not wi th the authors of this  report .

- ‘~4 ~~~



Ill ii ;,ri H ANAl .’?:; I S wi:i~i’ A ,‘r j i i,n l:l (;r,NVALUS I’ A MoD~;r. ‘l!I ,MI’’AI, I I ~? ii’

1,avr , i ( ; . :; . i , j , f t . ~r
1 

- i l  Martin I i .  t,o~~~} , j  I . k/

§1.  I) 
~~~~~~ 

t i i i ’  .~ l,l~ -rn

I n  t h i s  papi - r  w e ’  r c ; , I c r  th~ o n e — d i m e n s i o n a l  r ‘-a f ion— di fl ’- ;i r ,r , ‘ ‘  ~~ej r . i or , - . ~r ’ , ‘ i a ’  “I

to I ’  ; ,  r ,ij l’d tr i — m e l ’ ’ ,  I .ir mod ,’ of  le ft ” ,  r and Pr ‘~‘,‘; i i  I’ I , I ‘-s’ . f i rm ,,  I I  y kn ~ wr,

a’; I ’  “ I s  ‘ e l  ator ” . I-or the ~~ ramr-t r --r ranqi- in wh Ii wi are jot ‘ r - ; ; t  ‘r i  • t h i s  ‘;yst ’ rr

‘-x h  i i  I .; hi f u r ’  a t l on  f r o m  ,, s pa t i a l ly  a rid t e mp o r al l y  homogeneous ~o l ut  ion in to  S t i a d ’ j —

sta r - , ;~ i i a l  ly inh er noqer eous  s o lu t i o n s . The f i r s t  b i f u r c a t i o n  may he f r o m  i i  t i e r

- ‘ wimp ]  e us a I t h i  r- i gonva i nc .  A number of au tho r s  J1 , ’~J have  d i  s ,s .i - r3  1 

f s im p i  ‘- “ i ’ ç ’s v ; i l ,e , but  r a thor  I i -us  seem s to be known about the n o n — s i m p i . - .’ ‘- . s i ’ .

t ier - wi i , . ,  i y z ’  the b i f u rc at i on s  of t h i s  system at  the double  e i gr -n v a l u es  as an  - S I P !  I . 5  I

of I i -  l . u r y  developed in  12 , 3] , We o b t ain  a r a the r  comp lete c l a s s i f i c a t i o n  of the

F o s ’ . ib 1~r b i fu r c at i o n  diagrams in the vicinity of such points . Some of our results

w .- r - , h t , i r , - r I  earlier by Keener t5a l by less rigorous methods — his results are compared

wi th ‘ , j ~~ - ;  at. Li i’ end (If ~l.

Tht relevant “1u~~t . ion’  for  this model ar’

= B
1 

‘- -
~~ ~ X

2
Y - (B + L IX ~ A

(1.1 )
2

= ~~ 
-— - — + BX

~ t 2

subject to boundary ren di tio n s of Dirichiet type

(1.2) X(0) = X trr ) = A, Y b )  = Y ( r r ) B/A

Here the unknown functions X and V are chemical concentrations , A and B are

constant , ex ternally controlled concentrations , and B
1
, B

2 
are diffusion coefficien ts.

B plays Li ’- role of the bifurcation parameter ; that is , we are interested In the

Re u dr r : h ; ,j ’ )r ,surer !  in part by the Uni ted States Army under Contract No. DAAG29—75—C—
0024 and the National Science Foundation under  Grant MC577—04148.

partially supported by the Nationa l Science Foundation Grant MCS77—03655 and
the Research Foundation of C.IJ.N.Y .
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s l I m  St . 1, :  of u s  -u I i t  l u : - u f  (1  . ‘ 1  , ( 1  .2 )  f rom the t r iv i a l  S o l u t i o n

I L . I I  X A , V = B/A

- I i s  i s -  : . - ., e ’ l .  ‘I ’~ f . ,  1 1 5 , 1 ’  t i s  a n a l y s i s  we d e f i n e  incrementa l v a r i a b l e s

u = X - A, V V - B/A

l u r  uL - f  Wi .’ u L ,  tP ’- 1 , ’ - t r r  notation w (u,v) . These var iables satisfy the equation

rw
( 1 , 4 , 

;‘t. 
= LW + 11 (w)

SI -s

D 0 
a

2 B — i  A
2

( I . , ;  L =  2
0 112 ~~ -B -A

i :’ !

( 1 . 1  N ( w )  = u 2 
~ 2Auv + 

2)[ 1]

Both time independent and time periodic solutions of 11.4) can bifurcate from the

zi- re O l ; l t I  r of this equation , depending on the various parameters. However if 11
2

i s rather larger than D
i. 

say 11
2
/11

1 
is at least 3, then the first bifurcation

qjv. u a time i n d e r , - d . - rn t  solution. (See 111 f~ r proofs.) We consider only this case.

Bif urcation of a steady s tat e  solution of (1.4) can only occur if the linear

o;rrr~it ur L in (1.5) is singular . To avoid confusion let us say explicitly that L

operates on C
0
((0,it (, 1

2
) with homogeneous Dirichiet boumadary conditions. Since L

2
commutes  with (~ /~~ ) , the c iqenfunctions of L may be sought in the form

a
(1.7) sin 11

b

where a , b are constants and 9. is an integer . The two eigenvalues of 1 associated

to eigenfunctions of the form (1.7) are eigenvalues of the matrix

A
2

(1.8) 2 2
-B -A

7.-ru is an ciqenvalue of (1.5) if and only if B — B
9.
, where

‘~~~~~i~’~~
_ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



D 2 2
( 1 . 51 B 1 1 4 —~ A ~~ D 12 

+[
2 1 112

9

Thus the f i r- - s h j fri ri ,, t u n  point ‘f (1.4) is given by

(1.10) mm B 1
S I

For most values of the parameters in the problem this  m i n i m u m  w i l l  be achi eved t ’ z

exactly one value of 1 , and then the first bifurcation will be from a ‘ i so :  t .  -j r.

value. However if

(1 .11) A
2 

= D
1
D
2
k
2
(k + 1)

2

for some integer k , then the min ,unum in (1.10) is achieved at both 1 = k a r - I

1. = k + 1. and the “igenvalue is double . In other words, when the zero Solut.iur, of

(1.4) first loses stability, it loses stabili ty simultaneously with resper.t to

disturbances of wave number k and of wave number k + 1. This is the cast w.- ‘,tudy

in the present paper.

Our task of analyzing tb .  bifurcations of (1.1), (1.2) near a double ei i ’ r - - ,, I’i e

may be convenientl y divided into two sr,-j,s . It. turns out that (in non—deqererais’

cases) either one or three new solutir,nS bifurcate from the trivial solution di i

double ei qenvalue , and various combinations of stability or instabillVy for tb’ new

solutions are possible. In all there are five different cases. Our firs t problem is

to dete rmine which  case occu r s as a func tion of the parameters A , D
1
, 11

2
. (~~n1y two

of these are really independent, as the requirement that a double eiqonvalue tr- ~ ur

leads to the condition (1.11).) TI-,~ second step in the analysis is to study 51 ’  ffer’-t

of various perturbations on the bifurcation. There are two natural perturbations to

consider in this connection. One is to change A , D
1
, 
~2 

from unperturbed values

which satisfy (1.11) exactly to perturbed values which satisfy (1.11) only approximately.

Observe that, no matter what the values of these parameters, (1.3) still provides a

spatially and temporally homogeneous solution of (1.1), (1.2). The effect of this

perturbation is to split the double eigenvalue, so that two separate bifurc~ t ions from

-~~~
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the trivial Solution occur , both at simple eigenvalues. This perturbation induces

secondary bifurca tion away from the trivial soLution. The other perturbation we

consider is to replace the parameter A in ( 1.1)  by the f u n c t i o n

cosh/~ (~ -

(1.12) A ( F~) = A — ,
0 cosh/~~~

which is motivated by the follow ing considerations. In the derivation of (1.1) it is

assumed that A measures a chemical concentration which is fixed by the experimenter .

In practice concentrations can only be fixed at the boundary of the domains i s  ti ’-

interior the concentrations will be determined by solving a boundary l~rob1em

r A = 0  on (0.- is)
2

A ( O )  A ( s )  = A
0

whi ch has solution (1.12). Here r measures the rate at which A is depleted relative

to its diffusivity. When t — 0, (1.12) reduces to the previous case , but When ~ ~ 
5)

an explicit, trivial solution of (1.1) analogous to (1.3) is no longer available.

I ndeed , as a result of this perturbation there may exist a range of B where ( 1.1 )  has

no steady state solutions, spa t i a l ly  homogeneous or otherwise, at least not in the

neighborhood of (1.3). The effect of this perturbation is similar to the effect of

imperfections on bifurcation at a simple eigenvalue . (See for example (2 ,91 .1

There is an important symmetry present in (1.4) tha t restricts considerably the

possible behavior in this problem. Namely (1.4) comm utes with the reflection

( 1.13) Rw( ~~) = w(s —

In other words, no change in (1.4) occurs if one makes a coordinate transformation

— is — ( which interchanges r i ght and l e f t  endpoints of the interval .  Observe that

R sirs 9.~ (~ 1)~~ ’ sin £~

Thus one of the two eiqenfunctions of 1.- at the double eigenvalue is even and one is

odd . The two perturbations of the problem mentioned above also commute with (1.13).

=4 —
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We study the equilibr ium equation associated to (1.4), namely

( 1 14) Lw + N ( w )  0

by means of the Lyapunov— Schusidt  r educ t ion .  (See ~4 for  details.) At a double elgen-

value this procedure reduces ( 1.14) to a system of two equations in two unknowns .

depend ing on a parameter. Let us write the reduced equations

(1.15) G (x,l )  — 0

where G P
2 

~ 
~ 2 Here x = (x,y ) parametrizes the kernel of L and

— - B ’  where Il~ is the bifurcation point. Our notation in (1.15) does not

indicate explicitly the other parameters in the problem. We will show below that at a

double eigenvalue the reduced equations may be written

2 2
x 4 ~y + A x

( 1 .16 )  G ( x , A )  =

cxy + Ày

where c C ~ and 
~ = ±1. (This equation holds ‘ni cubic terms, and in non-

degenerate cases the cubic terms may be transformed —hange of coordinates.)

The symmetry of (1.14) with respect to the transformation is reflected in the

fact that the first component of (1.16) is even with respect to y while the second

is odd. Thus the bifurcation diagram

(1.17) {(x,A ) e G(x,A) = 01

is invar iant under the reflection y 
~ 

—y.

The first step irs our analysis is to compute the coefficients c and r) in (1.16)

as functions of the various parameters in the problem. It is then a simple matter to

determine the type of the bifurcation diagram by invoking the classification results

of (3J. (Strictly speaking to obtain the stability properties of the bifurcating solu—

tions the arguments of (3) must be supplemented , which i~~~ done in ~~6 and 7 of the

present paper.) This solves our first problem , that of describing the bifurcation

diagrams at the double eiqenvalue proper . For the perturbed problems we again refer

to ( 3 ) ,  this time for a result that an arbitrary small, symmetry preserving perturbation

of (1.1 6) may be described , up to a certain equivalence, by two parameters. In more

—5—
I.’ .
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~.- tr , ,~~il 1 7 1 1 ; , -’ t ,  a; or s i t S ’  n s v ’- r s , , l u n f - i l ’ l i nq of ( 1 . 1 6)  r e qu ir s -s  two p a r am et er s .

- cc S 3 I - r  ;r ’-~i s  s r  ~ ‘ t  ‘. . ‘ r i -  f i t  t t h a t  two J ir a met e r s  suffice d’-ps ’nd s s t rong ly

On ii ,  j r ’ -s - ’ r - ~~- ’ t  t i ’ -  o7~~ti~’ . - t  s o  ( 1 . 1 1 )  — w i t h o u t  t h i s , f i v e  pa ramete r s  would be

r i - pi r I  ( 2 )  . TI two .r- sin ’-t.-rs of t he  u n i ver s a l  u n f o l d i n g  may he i d e n t i f i e d  w i t h  the

I S - - p . r  t n - i t or-; ol  I I ’ -  ; I ys i cal  prob lem di scus:-;i-d ~lov’- - The f a ’-t  t h a t  two pa r a m s - t s r ;

o f t  I ’ ; .  for t i  ,r foidir; q m.~~
-i t-e-; n u t  a d d i t i o n a l  p e r t u r b a t i o n s  of ( 1. 4 )  — one m i g h t

for sx ,ilflt ,ls• tre at P u S  a variable concentration, partially depleted in the interior ,

or -n. - r i  aLt o r ’ , r u n  boundary conditions other than (1.2) — would not lead to more

‘ s r - I  -, s ’~~) ; , - h , - , ; o r  t han c l - c  a l r e a d y  o b t a i n a b le  w i t h  the two p e r t u r b a t i o n s  consid ’-r ’- ’) .

h-is much  j r  common w i t h  Keener  (5a ( , a r e f e r e n c e  k i n d l y  bro .iq h t  to our

-. ‘ t s - o t  sos, by W . I I .  Ray . We feel  t h a t  our paper sheds new 1 i ght  on the S ub j e c t  Ofl

- “v e r a l  - . - ‘;ou r ’ - , -(u t .- a; ar t  f rom -u e s t ion s  of r i g o r . Perhaps most i m p o r t a n t , S b.-

s’x 1 sr , ’ r ;,-~~~ I • r s r , i v ’ - r ;,,l unfolding with a known, finite number of u n f o l d i n g  p a r a m e ter s

e r - r i - s  P. s t i r  s o r t  of par-isnets-r exp l o r a t i o n  u n d e r t a k e n  in  these pap ers  is a t er s t i na t—

I 5 ’ ;  ; s~~~~- r - ~~, — . l t F o i y h  new :ompl ications may be introduced into the model indefinitely,

sr . ‘ n , j i t t t s  ly  r - - w  b”I , ,vior  will r”sult after the parameters of the universal unfold-

s’; s r. re; r’ ; ’ -rt- ’ i - - ‘ - - r i  ly, t f ’  -ri-Sent paper emphasizes  the impor tance  of symmetry

,~ t o s s  r e s i n , w i t r ’ s k s . h  -, number of q u a l i t a t i v e l y  new phenomena could occur.

f ’ s ox .impl.’ t i . -  c- o r - ’ r - s  i f  secondary b i f u r c a t i o n  depend s on symmetry . Consider a

; - s  t , j , . . ’ ~~j , (  t h e  r i- I ‘ i - i  r p i at u o n  ( 1.16) of the form

(l.l7 a) G (x,A )  + Mx

‘41 - n - ’ n-i ~s -. 2 2 m a t r i x  .~~~~u : h  pe r tu rba t ions  do not a f f e c t  the ex is tence  of the

trivial sol~~ on x = (3 bu ’ ( i n  gene ra l)  do spli t  the double e igenva lue .  I t  can be

‘ -h ow e  t f,a~ i f , - r i ,’ c C ) and rt 4-1 , then secondary bifurcation occurs for the

1 ” r t - a r i . ”)  ç r - ~l 0 1 e m  f a n s i  on l y  if  M is upper t r i a n g u l a r  (non—zero  diagonal  e n t r i e s

j , . - r m l t t e d ) .  t i e r , ’  b j fir :at ion means the crossing of so lu t ion  branches , not mere ly  the

,px t , r s ’ ’ - o f  -~ limit j o i n t , . The first perturbation discussed above , namely moving

A , Li , 1) slightly away from values satisfying (1.11 ), may be represented in the form

( 1 .  17a) • whi rr- 1sr,ws,v’ r he fact that the perturbation preserves symmetry implies that

-6—
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1.1 1S ’i l .” ; o r . a i . 11 j - a r t i ’ : u ; u r  tl i r  u l~l . r ‘ t a r C _ j a r ,  so 5- - ‘‘Is .--- / .0 - I S a  ‘ _ ‘ .

- f sour s. t o n  a uymm ’’ try I, ri - a~r i rag p . r  s r h - i t  I-i n, no c i ’  ‘ i’” :, ‘
~~ r’ a;- ‘, 

‘ s ’

- s ‘ -  -t’-d - A f i n a l  ‘ 1sf  f s - r ’ - r - .’ s -  b- .- tw. ’. - r s ( ‘~a and ti;s - ;~n.’sS-n;t j -~ij - ’ - f  i~~ t i - s t  ,, - . i l’! - .’) - r

‘ 1 ’ . t i e , d i s t in c t p er t u r b a t i o n s  — Keener  does not co n s i d e r  1 1 . 1 2 ) .  F r ’; , , ,  ‘i- a j~
, t o  of

v s . ’w  it i s r , a t o i r u t  to tin-, to f i n d  p h y s i c a l  r . -p r . -s . ’n t a t i o n s  for  bo th  t O  , r , f - ~~; i i  s - a

-.r r n - - t i ’ s - , in  th s-  u n i v e r s a l  u n f o l d i n g , not to ment ion  the r ot , -; -Icr s l it .- ~ ii ’js. - ‘a; r i C e r - - n

of ( 1 - 1 2 )

I I i i -  fol  lowing  no ta tion  w i l l  be used th roughout  t h i s  pa) - s - r  ‘ C - ’- ’ I,, ii a~~/ -

1.’t A ‘i 
2~~ Equ a tion  ( 1 .11)  ma-,’ be re—written

( 1 . 1 8 )  A = k ( k  + 1)0

‘41c r ’-  0 w i t h o u t  a subscr ipt indica tes  D l . In F i g u r e  1 .1  t h s -  l i n o ~- ~F - ’- lc~d ‘5 , k + 1)

a i d  - i t ’s tb. lines in the (A ,D) plane where ( 1.18)  is s a t i s t  I i - I  - fr ~~ rS..’s- - - r ’; n , -  I S r ’ s

1k — l, k, and (k ,k + 1) the first eiqenvaiue is simple and ti,. assos- i - - t - -  e l ,

u s ’ ’  s-n r i -i s(~at i-i l dependence sir, ~ c . If (1.18) is satisf i .-d , the fat ,t  s i  I e r r , - , , ;

- ‘ ‘ : u r s  wh i r r ,

(1 .1/) 0 (1 + Dp 1
) ( l + Dji

2
)

• S l i t . -  “ I — k 2 and 
~‘2 = ~~ + 1 ) 2

.

-7-
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52. Statement of re-sa1t- ~

In this section we j-resent our main results , deferring the proofs for later ss--r~~s’,sns .

Ill ustrations of the bifurcation diagrams , as defined by (1.17), offer the most

convenient forma t for this presentation. Some comments about Fi gures 2 .2-4 b’-Icw may

heip in their interpretation. These figures are intended to repress-nt three d i,rrs-nsa;r,-ai

bifurcation d iagrams, the three coordinates being ) , the bifurcat ion parameter; x ,

the amplitude of the eigenfunction whose profile is symmetric with respect to (1 .13);

and y, the amplitude of th~ anti-symmetric cigenfunctiors . Thr- oriCntation of these

coordinates shown in Figure 2.2 is retained throughout. The or diamond sha~,ed

f i gure at the ends of some of these bifutcation diagrams is intended as an aid to

v ;ou ajizatjon and does not represent part of the diagram itself. In F i g u r e  2 . 2  we have

shown tts~~ bifurcation diagrams of the unperturbed problem as a ‘irion of straight lines

t h r o ug h th’- or i g i n .  Here “T” denotes the t r i v i a l  so lu t ion , which  coincides w it f .  the

‘—axis. The branches labeled T and 1 span the p lane  of sjmm etry y = O}, w h i l e

hr-,r,’,r5s’s 2 arid 3, whe n presen t , are located symmetrically ir, a plane (cx + = O}

-‘-r ç- ’-r.di’ ;nal ar to the p lane  of symmetry. (Cf (1.16).) In the perturbed diagrams ,

Fi gir s- -; 2.3 and 2.4, we have labeled the solut ion branches f a r  away from the b i f u r c a t i o r,

p oint by ‘f.- closest solution branch of the unperturbed problem . In all cases the

)‘ert,srbed diagram consists of two conic sections , the branches T and 1 ly ing in

sf,, p1-i rs’- {y = 0) ,  ti’s- other branches ly ing syninetri’-ally in a plane (cx + — const}.

In, our b i f u r ’ ;a t i ’ ,r s diagrams the various solution branches have stability assign-

men ts determined by the spectrum of t~ s’s linearized equation. We claim that at most

two eigenvalues of the linearized equations lie in the unstable (right) half plane —

this follows by perturbation theory from the observation that the unperturbed problem

has a double eigenvalue at zero and the remainder of its spectrum lies in a half plane

RL ç < — r } , where 0. In the figures we indicate the three cases of zero,

one , or two efgenvalues in the right half plane by labels +s, — , +u , respect ively.

Here the sign gives the I.eray-Schander degree while the latter distinguishes between

the stable and unstable cases with positive degree.
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We should cau t ion  the reader tha t  our representation of the bifurcation diagrams

is purely local. It is known 111 that for sufficiently small A the solution of

(1.4) is unique and that for A bounded the solutions satisfy an a priori estimate .

Thus the b i f u r c a t i n g  solut ions  must turn around in the large, as indicated in Figure 2.5

for  the unper turbed case 1~ (notation defined below).

Firs t  we consider the unperturbed case when (1.18) is satisfied exactly. P.s

mentioned abov e , either one or three non-trivial solutions of (1.4) may bifurcate from

the trivial solution at the double eigenvalue. If one new solution bifurcates, it

may be either unstable or stable, while if three such bifurcate , either zero, one, or

two of them may be stable. We refer to these cases as 1
O~ ~~~ I I I

O~ 
III
)~ 

111
2

respectively - the Roman numeral indicates the number of bifurcating solutions and

the subscript the number of them which are stable. Tt turns out that which case occurs

depends on A and D but not on 0. The type of the bifurcation as a function of

these two parameters may be determined from Figure 2.1, where we have identified two

sets of five regions in the A , D plane in which different behavior obtains . The

two different partitions correspond to k odd or even. Equations for the boundaries

of these regions are given in §4. We have sketched in Figure 2.2 bifurcation diagrams

for each of the five cases. (In this paper we do not consider the degenerate cases

when (A ,D) lies on the boundary between two regions in Figure 2.1.)

We now consider the effects of changing the parameters A and D, the first  of

our two perturbations. (As above the bifurcation diagram does not depend on 0.) If

(A ,D) varies along one of the lines (k ,k + 1) in Figure 2.1, no qualitative change

in the bifurcation diagram will occur unless (A ,D) crosses into a different region.

(This is of course a local statement — the size of the neighborhood in which it is valid

decreases as the boundary is approached.) Thus only one of these parameters has a

qualitative effect on the nature of the bifurcation diagram . Let us take ~~, the

change in B. Making 6 non—zero splits the double elgenvalue into two simple eigen—

values, causing secondary bifurcation . We illustrate the effect of this perturbation

‘_5’ _ - -
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Figure 2.2c: Unperturbed 111
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Figure 2.2e: Unperturbed 111
2

for tb- five cases above in Figure 2.3. The d iagram depends on the sign of -5 and the

parity of k as indicated . Note that the A—axis , representing the trivial solution,

is -, )sart of all these diagrams . Of course the effect of the perturbation is strongest

near the center of the diagram - although the perturbation is uniformly small through-

out the interval, the unperturbed problem is rather singular near the double eigenvalu e

i- r r,I~er and hence more sensitive to perturbations . Perhaps the most noteworthy feature of

IL - dia q rams occur s i . n Fi gur e 2 .3b
1. (Let us remark that the circle in this diagram l i - s

in a p1ane perpendicular to the two lines. Similarly for Figure 2.3a.) The sOlution

branch that originates front the first bifurcation exists Only for a small interval

above the bifurcation point before it is reabsorbed by a secondary bifurcation . A

similar Phenomenon occurs in Figure 2.3e2
. It is also worth remarking that the first

bif urcation can be either super— , trans— , or sub—critical.

As to the second perturbation , we have sketched in Figure 2.4 the bifurcation

diagrams which result from taking > 0 in (1.12). The Outcome depends on the region

and on the parity of k in a somewhat confusing manner . For example, the unperturbed

diagrams when (A ,D) belongs to region I or 5, k odd or even, are all  the same ,

namely l I I
i
; above if 6 # 0 the perturbed diagram depends on the parity of Ic but not

the reg ion, while here if si > 0 the diagram depends on the region but not the parity of k.

H —14—
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Figure 2.3b
1: 

1 ,(_1)k6 > o

Figure 2.3b
2
: 1, (_ 1)k6 
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Figure 2.30
1: 

1IL
0
,(_l)k6 > 0

Figure 2.3c2: 111 ,(_1) k6 0 -
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Figure 2.3d
1: 

111, (_ 1) k6 > 0

2
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I

Figure 2.3d2: 111 ,(_1)k6 0
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Figure 2 .3e
1
: 111 ,1_ 1~ k6 > ~

3
2
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- +u T
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-

+S

+8 +9

3
2

Figure 2.3e2: 111 ,(_1)k6 ~
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Is -jat iv’: values of F- would lack physical s iqrs i f jean-- ’- - As it h~ p~’.-r-; , Lt,S. ‘/ ‘ - ! ,

f~~r t i ’ , v i  r ir ius unper tu rbed  dii ’) r irnrn; of t yp e  111 , the i-I ia~j r a m  wI, ich would rs - ;u it ; f

0 o-;o~,r anyway fo r  (A ,D) in a different reg ion and k of the oppos it. par a ty -

Tin-; d u ) sj i c - i t ior, does riot occur for  the cases 1
0 

or 1
~~

. W~ have non,, tb ’  less

in~~l , a lsd the diagrams for .. 0 w i t h  tise label “ u n p h y s i c a l ” , s in -e these d i a gr am s

couLd w e l l  - -a~-~- s- ~ir If the perturbation were caused by some ether m~chanlsm without -,

‘le fini r ’- si gn , as for ~xamp1e imposing boundary cond i t ions  s l i g h t l y  d i f f e r e n t  f rom ( 1 .2 ) .

We do not  an a l y z e  such p o s s i b i l i t i es  he re ,  but only men t i o n  that  no matter  how coin;~1icat ’d

tb ’ ) - r - r t u r b i n q  mech-anisxn (assumed symmetric), the diagram which  r e su l t s  is deter r r in ed

gu . i li t -~t i vel y by the value:; of the two pa rameters in the un iversa l u n f o l d i n g  of ( 1. 1 6 ) .

(f;. ,- ( 2) concerning non—syn~netric perturbations.) This consideration gives the diagrams

here a greater significance than otherwise apparent.

Oy far the most i ra t F sr e s ti nq  of these diagrams is that of Figure 2.40
1
. (We caution

the reader not to try to imagine a surface r;jsanned by solution branches 1 and 2 or 1

and 3 — rather think of 2 and 3 as lying in a plane cx + 3 0.) Here the two non-

trivial solution branches of positive degree change from unstable to stable as ) is

increased , without ever encountering a zero eigenvalue - in other words, they undergo

a H~pf bifurcation! As mentioned above a Hopf bifurcation can sometimes occur from the

trivial sOlution in th~ unperturbed problem , but only at much larger values of B;

indeed the flopf bifurcation of Figure 2.4e
1 
can occur for parameter values where the

unperturbed problem does not admit any Hopf bifurca tions . Because the eigenvalues

must he close to zero, the per iod of the associated limit cycles will be large ,

specifically O (t 1”2). In a subsequent publication we will consider the stability and

the domain of existence of these limit cycles .

Finally, let us suppose that both 6 and r are non—zero. Then there exist six

regions of the , ii plane where the perturbed diagrams exhibit different structure,

as Lndlca tc’d in Figure 2.6 for the case 111
0
. Note that regions 1, 2,  4, aa-ad 5 in

the figure only contain points (aS .c) for which c 0(6
2
). We feel that regions 3 and 6

—20-

~~~~
‘:

~~~



Figure 2.4a
1: 

j

~~~
, r > 0

T 

T 

I . 

-

Figure 2.4a . : ~~~ unphysical
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Fiqure 2.4b
1
: T

l~ 
unphysical

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
T

T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 2.4b
2
: I~~, t > 0

-22- 

t
- 

—

~~

—.- — — — —- 

~~~~~~~~ 
*‘# ~~~~~ 

— 

— 
C’- —~:~_



Fi gure 2.4c
1: 

11I
~~
, t > 0, k even

1~1~~~~
III

~~~~~
Figure 2.4c

2: 
I I I~~. r ‘ 0 , Ic odd
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Figure 2.4d
1: 

II1
~~
, r > 0, region 5, k odd or even

2 

2

Figure 2.4d2: I1I~ , c > 0, region 1, Ic odd or even
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Figure 2.4e
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Figure  2 . 5 :  Behavior in the large

must be regarded as the generic cases, since points (*S,t) whose components are of the

same order will belong to these regions . The diagrams corresponding to regions 3 and

6 are those illustrated in Figures 2.4c
1 

and 2.4c
2
, respectively ; the diagrams correspons—

ing to the four th in  reg ions are required to effect the transition between regions 3

and 6. It is quite possible to imagine situations where these transition diagrams are

relevant , b~ t we suspect that their detailed structure is too specialized for the model

at hand . We refer the interested reader to (3 1 for a more complete discussion.

__

Figure 2.6 . 4
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§ 3. Review of the classification results of

In the next section we will appl y the Lyapunov-Schniidt reduction to the equilibrium

equation (1.14) and will obtain a system of the form

I a + a y2 + b Ax 0
(3 .1) 

1 2 1

a
3
x y + b

2
Ay .0

at least module cubic terms. These equations represent the most general reduced equa-

tions at a double eigenvalue for a system governed by a quadratic non-linearity and

possessing the syninetry

(3.2) JG(Jx,A )  = G(x ,A )

where J is the matrix

1 0

0 -1

In this section we recall some of the definitions and results of (33 concerning the

classifica tion of such problems.

Let G,H ~~2 ~ 
~ be two reduced bifurcation problems, defined near the

origin. We shall call G and H contact equ ivalent if there exists an invertible ,

2 x 2 matr ix-valued function and a diffeomorphism on ~~2 x IIa of the form

(x , A )  ‘~ (p (x,~~),A (A )) such that

(3.3) H(x , A ) — T
A 

G(p(x ,A ),Il (A ))

We are primarily interested in bifurcation diagrams such as (1.17), and it is clear

that the bif urcat ion diagram of G is not changed at all by mul t ip l ica t ion by an

inver t ib le  matr ix . The diffeomorphism (p, A ) represents only an iriessential change

of coordinates in the problem , which will not change the quali tative nature of the

b i fu rcation diagram . These remarks are intended to motivate our def ini t ion.  ( In

general t ransformations such as (3.3) can change the stability assignments of the various

solution branches in a b i furca t ion  diagram . However the degree of a solution branch

is well defined since we requ ire that T
1 

and d~ , the differential of p ,  have

positive determinants.  We ignore the stability issue for the time being , returning to

it in S7 . )
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‘l’he above s-Pf; r a t  t in t ,  t i . - g  1.-ct : ;  I f ; . -  symmetry  of ( 3 . 1 )  - The .;J~nolsr idt F - ‘;oordj rs.in-

transformations ( D , A )  w h i ch  prt-SF’rv .- syunnetry must, satisfy (3.2) and the ma i n  s - i - : ;

I must  s a t i s f y
X/

(1.4) J = 7
Jx, l xl

(In f-r;a- :t i’’ (3.4) simply means tha t the diagonal entries of T are even functions

(if y;  the  of f  d i a gonal en tr ies , odd.) We shall call two problems G and H

e~ u iv a r i *nt iy  contac t e~~~ivalent if (3.3) is satisfied and all functions have t he

appropriate symmetry. Usually we abbreviate this phrase to e~~ji~,~~~ent.

It is shown in 33) that the classification of problems of the form (3.1), up to

i- gui Va 1 ‘-net- , ‘f’-ja-nds r,nly on

(3.5) c — 
~~

-‘_--

~ 
and r~ — sign (a1

a
2
)

In other words (3.1) is equivalent to (1.16) , when,- c and y~ are given by (3.5).

‘fbi- type of the b i fu rca t ion  diagram as a func t ion  of the parameters c and n is given

in Figure 3.1. S t r i c t l y  speaking any two problems of the form (1.16) with different

_

F’ 3ure 3.l

v - ak . , ’ - : ;  of c are Inequivalent , but in practice the qua l i t a t i ve  fea tures  of the b i furca-

tion diagram are unchanged if c remains within one of the intervals of Figure 3.1.

Moreover , provided c avoids the boundaries of these intervals , the higher order terms

tha t were neglected in w r i t i n g  (3 .1)  may in fact be transformed away by an ausp icious

choice of i , p, ft.

Reference 133 also considers perturbations of ( 3 . 1) ,  in tenan sof the fo l l owing  s p e c - i t  a -

defini tion . By an unfo1d~~~ of a bifurca tion problem C : • we mean a

-2H-

I
:1

--‘ 

— 

— 

— --‘ 

- 

~~~~~~~~~~~ -
~ 

—P



‘- ;rnoo’  I ; m.ij -  F I’ 
1 I”~ e u - - I s  t h a t  F I x , A • 0) — C ( x ,  I - The van iabl’-s in

r h ’ t 1 ; r - I  , r j - s n ~s s t s s! F w i l l  I ,  - al l ’, : !  u n f o l d in g  parameters .  We show is 1 3 1 that

+ ny
2 

+ Ax + -a
( f n ,) I- (x.’,-i ,f~, ~- > =

- 
(c + y ) x y  4 ( 1 + B ) y

;r f-~ I - 1 ; a g  of (1- 16) relat ive to equivalence, assuming c # 0, 1.  Th i s

SC-ar; ’, irs pa r ta- :iiu n t };,,r given an, unfolding of (1.16) of the form F(.,.,~~) — r; 4 t N ,

t i . . - , . -  ‘-x i St  smooth f u n ci  inns  i ( s  ( , B ( ‘ )  , -~~( t )  , defined for small F , such that

F II a ’~ ‘‘ - p i  “alt-nt to F ( , . , -F ( 5  ) , B (t  1 , y ( n) ) . See 131 for a more thorou gh  ‘I i  ‘; ‘ ‘u ss,on ,

of i~~~- ;e i 5:;u,,- ; —

The r’- -,d’:r will note that our universal unfolding (3 .6 )  contains three u n f o l d i n g

f- a r - imF-t .- re , w h i l e  we ind i cated abov e that  two parameters suffice to describe perturba-

t,oa s:; - sf (1 f F ) .  The explanation of this discrepancy is as follows. The parameter c

r ! ’, t .-rm in ,. -: ;  tb. overall character of the bifurcation, but, as noted above , once i t is

r ’-: ; ~ri- :ts -l to on,. of the intervals in Figure 3.1, small changes in this  parameter do

not affect the qualitative nature of the bifurcation. Thus we regard ‘y as an

inessential Parameter for our present purposes.

The follow ing table indicates the correspondence between the notation of the present

paper and t hat  of 131 in naming the various cases which arise.

Present notatic~c1~~~1 I~ 111
o ~~~~ 

111
2

Notation of (31 2h 2e 4e0 
4h 4e,,,

Figure 3.2
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54 . Th~~~~~~~~r v - ~ chmid ,reduction for the unperturbed case

. t  us b e g i n  our discussion with some comments about the interpretation of (1.4)

a n-I it - - i so-,-- a , , t F~d e q u i l i b r i u m  equa t i on  ( 1 . 1 4 ) .  We consider ( 1 . 4 )  as an evo lu t ion

“i , ; at a - ;r  or, the Banach space X = C0 ( ( 0 , i r ) , ~~
2 ) .  We could of course regard L as an

;i s f s ~ s s r sd , ”f  1 i nio~n operator on K wi th  domain

Ii = {w e C2 ( ( 0 , s ] , 1R2 ) w( 0) = w( i t ) = 0)

but ws- )-r ’-fer to regard L as a bounded l inear operator L : D ‘. X.  where 0 has

the 2 
topology . Moreover N, considered as a map from 0 in to  X. is C

Frechet :Iafferentiable - indeed N is already smooth considered as a map f rom X i nto

it se l f .  Thus the r i g h t  hand side of ( 1 . 4 ) ,  namely L + N , def ines  a C mappi ng

I : T) X .  Note tha t  (d~~)
0 = L , which is a Fredholan operator of index zero.

:.~,‘ = ker L and range L. We shall assume below that X admits the

decomposition

( 4 . 1 )  X — ~

Thi-; means that all the generalized eiqenfunctions of L associated to the eign’nvalue

n--no already belong to ker L; in other words, ker L2 ker L . We also suppose tha t

the ‘;pt~~-trum of L restricted to is properly contained in the stable h~,lf plane , say

( 4 . 2 )  c I ( L J X 1
) C {a : Rt.~ < —c }

where i > 0. Since C 0, it follows that 0 = • 0~ , where 0
1 

0 11 X
1
. Also,

L is a linear j somorphisan between the two Banach spaces. Let E
0
, E

1 
be

the Projections associated to the decomposition (4.1).

In the Lyapunov-Schrnid t reduction one eliminates all but a finite number of

components of w in (1.14) by inverting the non—singular part of L . Specif ical ly

a d e f i n e  a mapping W : - ‘ implicitly by

(4.3) E14(x + W(x)) = 0

for  x C X0. it  follows from the implici t  function theorem that (4.3) is soluble in

some neighborhood of zero . Let C : -, X 0 
be def ined by

( 4 . 4)  G ( x )  — E
0

$(x  + W(x))

— 30—
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Then x + W ( x l  is so 1- a t ‘si s of (I . 14 1 if ‘and or, I y a I , (xl = 0, -,r , f - v r / - ‘s t - a ’  - a

of ( 1 . 14 )  has t h i s  f’5rrr .

I - or -~,s51,, 1t,a f [‘ s i ,  I t  I S  ‘s t ;V’’ i;  a F r ; F t o  bals a ,.- I o r r s , 1 - , ’ Os , , ,  sO “ ,s r ’ l  r a t .0

the 1yapunov— :;chm L~I t r ‘ - ‘ I - y - t  a or,. - - arr-J ,r-,g ‘- xp l  is’. , ti’1 ‘ 1 ’ i ’s 1 -  r - -J s ’ :  - a r  sir ’ ‘ - - r , - L’ -

W , w be a basis for K0 - I f  w ’- l a r ~~m . ’~r i z’- l~y ‘/ ,, r ,. ir - - - , - ,,/

t hen we may r e w r i t e  ( 4 . 3 )  as

(4.5) TsW(x, s) E
1
0(xW

1 
4 yw 2 

W ( x , - ) l

Let w
1
, w

2 
be a bas is for ker I,, where L jq if , . o f ’ . : - r  : - - ., 

(4.6) (w
*
,w , ) — ,~~~ -1 3 1

for some positive constant 5. (Here and below ( . , . >  - i s r , o ’ .  - i s  
2 

r O C - n  : s - ,- ( - ,

Then , in terms of the coordinates on above, (ia i t.- r ’ - ~ s - r ,  - - or

(4 .7 )  t-~0
w =

Thus equa t ion  ( 4 . 4 ) ,  d e f i n i n g  the reduced mapping  0 1 C I’ , m a’/ a, - - “-wr , ’-

in components  as

(4.11 ) C . ( x , A )  = (w .,sls (xw
1 ~ “~

‘2 ~ 
W (tc ,A)))

where i — 1, 2. We shell always take w1 
to be even with n .- ;p e- Ii .10 azsd ‘4

7

odd ; U
1 

and w 2 inher i t  the corresponding parities by (4.t)

We may perhaps avoid confusion if we introduce notation to i r;rJ i ‘- - i t  ‘- F r  - -“rs - t ’ r , ’

on B that is implicit in L. Let us wri te 1~ ~ AM , where i S t ’ / ’rs t s ’/

(1.5), with B fixed at the bifurcation point, and

1
(4.9) M w = u  .

—l

Using the fac t tha t L
0
w
1 

— 0 we may rewrite (4.8) as

(4.10) (x.A) (w , (AM + N) (xw
1 

+ yw
2 

+ W ( x , A )

We now s tar t  the computation of the coe f f i c i en t s  in ( 3 . 1 )  as ( u s- F - s t  t t - -

var ious parameters  in  our problem . In the fo l lowing  l emma d
2 N d ’- r s F e S  I s -

Frechet der ivative of N , a bilinear mapp ing X ~‘ X -
~ X.
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I , C Imtl-1 4 _ I :  ‘ff s ‘ - ‘,- -  ‘ r d  - s r - I s a  ‘I . - r  ~~- i , t V~~0 f t fl ’ ’ r ’’ l a’ ’’’f m a p  ( , -a t t j s -  s r a j ;  is - a r ’ ’

by

2
• I

— ‘ w ,‘a £-I (w ,W a )
-s -s ,

I /

- - ‘w ,Mw I -
I J

1-no’s f: It fr,I low , by ‘I;f f ’- r ’r st i a tio r s of (4 .1(a) tl ,at (wfs’-na A 0)

2
-s 

* 2 :,w ;,w * 
~ w

(4.11) - - - - (-w , s’l U(w , 4- - - - , w 4 -
- - ))  + ( w , ,dN :‘ ‘

~~ 
) -

- -ax j -ix , 2, -ax i ~x - AX
I ,a 1 3 9_

However ‘ill is zero at the origin. This means that the second term in (4.11) var,ishe’s

at the origin and that , by (4 . 5 ) ,  also vanishes there. This verifies the first

formula in the lemma , and the argument for the second is similar . The proof is s’:omt~
I.:tF: .

We do not reproduce the details of the computation of the coefficients in (3.1),

but or,1’/ record F t . -  landmarks us a guide to the reader. It follows from (1.6) that

-it the orig in

(4.12) d2N ( w
1
,w
2
) = 2(~ u1

u
2 

+ A(u
1
v
2 

+ v
i
u
2)J[

J

The cigenf unc tions of L and L at the double ei genvalue are given by

ODp BDp
w (~~) — s i n  kE~ 

1 w ( 1W) sin(k + l)1 
2

1 11)1
1 

_ l _ D 1i
2

(4.13)
1 + rita

2 
1 + Du

1
= sin kP~ w

2
(~~) f

1~~~~~
k + 1)~

0)12 ~~ l

where

0)1
1 — 1

~2 
+ 0)1

1
)12

(0 — 1)
( 4 . 1 4)  — 

~~~~~~~~~ 

p + Dp~~p~~(0 — 1)

is a correct ion fac tor  r equ i r ed  by the normal iza t ion  (4 .6) . The reader w i l l  note that

i f  k is odd , then w
1 

in (4.13) is even with respect to the symsaetry (1.13). Suppose

—32— a.~I ~
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that the two wave numbers at the double eigenvaiue are 9~ and 9~ + 1. (f  A i’ ; odd ,

we shall use (4 .13 )  with k — 9; if 9 is even, we shall use (4.13) with k = — ( 2  4 I I .

By this ruse we can always arrange that the smaller wave number (in the algebrai-:

sense) at the double eigenva lue is odd . In this  way we may observe the p a r i t y  con”en-

t ion introduced above and s t i l l  avoid c a r r y i n g  two sets of fo rmulas  for  the ei genfunctions.

On substi tution of ( 4 . 9 ) ,  (4 .12 ) , and (4 . 13 )  into the formulas  of Lemma 4 . 1,  one

f i nds after appropriate manipulation, the following formulas for the coefficients in (3.1) -

D~ ~
(4.15a) a — ‘i — — 2 1

~ (~ 2 1 + 1

Dp
(4.l5b) a — ~~~~~~ — 2

2 1 + DLi
I 

2

f Op
1 

Op
2 

)
(4.l5c) a3 — 2f

111 
— 

~~~~~~~~~~ 
— 

1 + l3)12J’ ~2

(4.lSd) b
1 

— ODp
1

(4 .l 5e )  b
2 

— f
1 ~

Here we have used the notation

— eAR f sin~ kF, d~

— OAB f sin k~ sin 2 (k + l)~~d~

Note that I
i

, 12 have the same sign as k.

According to the results of 131 quoted in §3 of the present paper , the qua l i t a t i v e

type of the bi furca t ion  diagram associated to (3 . 1)  can change only if one of the

following equations is satisfied.

(a) a
1

— 0  Ib) a
2

0

(4.16) 
(c) 5

3 
— 0 (d) b

1
5
3 — b2a1

Let us consider th. simplest of these equations, (4.16c). On multiplying (4.lSc) by
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(1 I ) , ,  ( I  • 0,, , i , ’ 1  -i avi da r, -a by - , r , -ah— z i ’r - , 1 - . ~ to, wi- may ri-wr i t’- (4. ji / aO

— ta~~ — I; -1 2

‘is-  m - i - j  - o m : , , r ,s -  ‘ ( C  - I - i  r i t  i - P r o ,  o f  ‘-1 to show that A
2 

= 0
2
)1
1
)1
2
, from whlch it fol lows

i:.,i ’ (4.jF . - ; a- , - i t a - f  i ’ d  if and or a l - J  if A = 1. The reader will note that this Ii,.’-

it -- - -u ’ as o r ’ -  of t I e  ‘l a -u - l u ,’; ‘ - ar ;-: i n f1s ’ju re 2.1, both cases (a ) and (b) .

oo- a-I .•,- ,it a-an of C - t u i t ions  (4. l’ s and ( “  . lOb) is s i m i l a r .  F i r s t  invoke (4.15)

to show thst tb.- -~.- equa t ions  are s a t i s fi e d  if and on ly  if

( 4 . 1 7~ ( a )  — 1 (b) Op
1 

1

r e- s ; - , - o t a ’ ui - j y ,  and tb-sr . use the definitions of U to express (4 .  17) ir , term s of i f s ”

q -ar sm .-t~- rs A ara’I 0. If k is positive , the result is that (4.l6a c-n hi is satisfied

i f  a r - i  ~ (s )’/ i f

(a) 0 = (A — 1)
2
, A 1

(4.1::) 
2(h) 0 — (A — 1) , A > I

r ” s f - ” ot a - .” - ( -1
- : if k is ni-qative . the formula 0 = (A — 1)

2 
remains valid but the

i nequalst ;s:s in (4.111) are reversed . The reader will again note that the parabola

[a — (A — 1 , 2 
o- -:-.ro as a dividing curve in Figure 2.1. The remaining, unidenti f i ed

da’uadi :s~ --- ar-i.- in the figures is of course associated with (4.16d ) . Its equation may

ri, wr i ~~‘ r

2f
2
(l — 0

2
l
u
2 

— (1 + Dp
~~
)(l — 1)11

2
) 0

-91 , 

f ~ 
3 (k + 1) 2

2 2 1 (k + 2 ) ( 3 k  + 2) 
F

but ( 4 . 1 1 )  ‘Ira ’ s r sot~ seem to admi t a s imple  representation as a func t ion  of A and 0.

In Figur e 4.1 we have tabulated the signs of the coefficients (4.15) in the various

r’-’;ions using thc- notation (3’). The type of the bifurcation diagram may be determined

by - - am p -ar , Osar ,  w i  Fi s I- i ’~ ir .- 1 .1 .

I

C
— 3 4 —

‘
C
’
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ke~~aor:~~~anber $ -a c 1 ~~~n ’1~s,o of d~~ qrarn

1 + + 4 + + +
~~~~~~~ 

111
1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
-
~~~

- -
~~~~
- i-’- - - ± ~~~~~~

—
~~~~~~

— - -

3 ‘ 
— - C i  — + — — I I I

- ‘ I 2
- —---f-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -

— - —
~~~ —~~~~~~~~ + — + 

~0

Fi,~~ re 4.la: k positive

) 1 F - g l ’, j -a number a
1 

a
2 

. c c I r 1 Type of d i ag ram

~~~IIIIL 711
_

1I~~”2 1

* C ~ 

~ L 
+ 111

1

F i~j u r e 4 . ib :  k negative

35 4

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - 

~~~~~~~~~~~~~~~~~~~ ~~
-
~~~

‘: ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ‘~~~~ t4i~~~~~, - - - : . - 
—



l y s r ~ino v—Sch mi d t  -oiiool ata oo0 for the j rtarh ’-d prohl’rr s

It may perhaps g A V’’ a~~ Is-are, ez; s’as , t i c -n  a t wi a r a d a r - s i r e  how to ‘‘arn1,’;t” :, s- - , r f  ~~ld  —

a t- ; parameters i n  a’ a ~6- )  ?~~ z’ ‘ierera 1 pert - a r h u t  ion of the  e qu a l  a i r  a urn eguat i  or, )l_ 1 4 )

-,1 ti,ou-;f for tb ’ iar Ob 1F~~ at hand ‘90 are ,stIc- to avoid the most unpleasant a~~ (~s’- ,t- , of

t r a : , ‘ , a l o a l - , t a o r s .  . ;u;s ;aos.-  (1.14) is modified by a çserturbation term to read

( ‘~.l) 1(w) 4- tP (w) 0

Li:t I’, ,  be de f ined  as in i4 to be the project ions  r e l a t i ve  to the  decompo:.at ac - f

( 4 . 1 )  , tl i d-at s be) r,r; computed only for . = (~ . We d e fin e  tb ’ rerI-j ’;e ’l ‘- ‘ ( ; , t l  o r : - ;

deierading on r, as follows . Let W Zr • h be defined imp li ’-it ly hf

(5.2) E L I  sF’) (x + W(x,a.) )

and let

(5.3) G(x ,c) E
0
($ + nP) lx + W(x ,s )  ) -

Transla tlr a r, of these expressions in to  coordinate no ta t ion  poses no special ‘l a f f a - : - j l t a s ” ,.

al though i t  should he ment ion ed tha t , u n l i k e  in  ~4 ,  the f u n c t i o n  W p l ays  a r o l e  f o r . - .

It  follows fro m the na tural  analogue of (4 .5) tha t a t  the orig in

( 5 . 4 )  ~~~~ = —L
1
E P

A t :  1

-9tere L 
1 

is the generalized inverse of L. Suppose we define coefficients for t is s

p-ert-arb .-d problem by

2
. (x,n) — G .(x,O) = + 

~ 0 .  x . + i~. ‘I + hot
i 1 ‘

where ‘-be higher order terms include terms of order ,2, rx2, ,) 2 A straightforward

‘ : - i l o L a l a ti t s fa shows that

* 
a

(5.5a) u , = (w ,, P)
1. 1

* 2 —1(0 - ’- ) )  8.~ = <w ,,dP (w .) — d N(L E P,w )>
1) 1- 3 1 j

* AP —l( ‘ .Sc) B .  — (w ,, — ML E P )
a, iA 1

The only significant difference between these formulas and those of Lelmna 4.1 is the

appearance of a second term In  the inner  products of (5 .Sb  and c), and this difference

is a d i r ec t  consequence of ( 5 . 4 ) .
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Let us f i r s t  compute the u n f o l d i n g  parameters  for  the i s e r t J n l a a t a o :  -ass’,’:jat,’--~

to (1 . 12)  - it is readily seen that

A (~~) = A
0 

- —
~

-
~~ ~~(ir - ~) + 0(t

2
)

~io te that A appears Only  in the f i r s t  equat ion of ( 1 . 1) ,  and there on ly a dd i ta v ~’ly .

( R e m a r k :  In  the passage to ( 1 - 4 )  we s t i l l  l inear ize  about a constant  f ’ a r a c t i o r ,

namely X = A
0
, Y = 8/A 0

.)  Thus in the notation of (5 .1)  we should d e f in e

1
(5.c4 P = — ~ A0(js — F, )

a 1—erturbation which is independent of w. We compute from (5.Sa) that - i~ = ta , as

requ ired by symmetry,  and that

2A0( 5 .7)  
~l 

— —j — (1 + D1a
2
)

k

The computation of the first order terms would be rather tedious because of the

presence of L 1 in the relevant formulas. However, we recall from §3 that  the

zeroth order coeff ic ient  ci in (3 .6 )  dominates the f i r s t  order c o e f f i c i e n t  i~, provided

they are of the same order , which is the case here , since (5.7) shows that ‘i is non-

vanishing . Thus the e f fec t  of the perturbation (5.6) is determined by the sign of ‘a

(negative) and the sign of the coefficients in Figure 4.1. The reader may consult 13]

to check the validity of the diagrams of Figure 2.4.

The perturbation associated to changes in the diffusion coefficient 1) admits the

representation

1 0 A 2
(5. 8) Pw — ,

0 8

which depends linearly on w. We could easily substitute (5.8) into (5.5) and evaluate

the resul t ing  expressions — this perturbation differs from the preceding one in that

here P vanishes at the o r i g i n , e l i m i n a t i n g  the troublesome terms with L 1. However,

there is a direct way to assess the e f fec t  of (5.8) , which moreover sheds some insight

on the problem. This perturbation splits apart the double elgenvalue but does not

H 
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jffr--;t the ex i s t - . r c ’-  of r h ,  tr, ii Sol ar ion . We ~~~~ s- ~: fr~ s (3.6) that there is

essor t ua l iy only -~so w,,-~ t - - do : as , namely to cf,a~~,e - but to keep ,i equal t i  zero .

Thus to - f -’ : ;nibo rh - ~ ea t u r h e -~ ia ~~-;ra.-n we need only know which mode bifurcates from

the trivial solution f i r s t , and ‘
~~*; ‘oa n d o — i d e  t 5-ais by an independent argument.

:~ -r us a r-call ( 1- °, the fo , -’.ula fox the h i f u r c~~tion point of the mode w i t h  wave

numbe r 1. from t h e  t i  iVial s lu t -  iota

A
2 ‘

(5.9) B
1 

1 + —- - + D-~
’ + —‘—i -a

2 2
c-hserve that we may write (5.9) as a function of real variable Di , say Bi 

= ~~~~~~~ -

By hypothes is

min{f(DP.
2
): t — 1,2,3,...)

is assumed at two d i s t inc t  integers k and Ic + 1, as indicated in Figure 5.1. It

may be seen by inspection that increasing ID lowers B
k 

and raises Bk+l
. In other

words , increasing ID makes the mode with smaller wave number ( in absolute value)

bi furca te  f i r s t .  This is the behavior portrayed in Figure 2.2. To facilitate the

reader s checking this statement, we mention that the solution points of the mode

wi th  odd wav e number are located in the plane of symmetry of the bifurcation diagram ,

while  those wi th  even wave number occur in symmetric pairs.
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i6. On the relation betwee~~~~~~~Lya unov-Schmidt and center manifold_reductions

The Lyapunov—Schmidt reduction enumerates all rest points of (1.4) but jsrov i-I.-’

no information about the dynamical behavior of this equation. In this respect reduc-

tion of (1.4) via the center manifold theorem is preferable , although somewhat less

straightforward . We begin this section with a brief review of the properties of the

center manifold , r e f e r r i ng to 141 or 181 for details not provided below . We c o n t i n u e

to use the notation introduced in §4 for the Lyapunov— Schmidt reduction.

The cen ter mani fo ld  a~1 is a f i n i t e  dimensional subaanifold of X parametrized

by x E X0. More precisely

(6.1) H = Ix + V(x) : x e close to zero}

where V : * satisfies

(6.2) (E
1 

— dV E
0
)Is (x + V(x)) = 0

The reduced mapping H : + in the center manifold context is defined by

(6.3) H(x) E
0
$(x + V(’c))

Thus {x + V(x) : 14 (x) — 0) provides an alternative enumeration of the solutions of

(1 .14) .  At the same time, however , the trajectories of (1 .4) tend to trajectories of

the ordinary differential equation

(6.4) = FI (x)

in the following sense. Let V be an appropriately small neighborhood of zero in K ,

let w I t 3  be a solution of (1.4)  such that w I t )  e U for 0 < t < T, and let

*5 (t) — I I E 1w (t  — V(E
0
w(t))Ij

the distance between w ( t )  and its projection into M. Then

*5 (t) ~ ce~
tt
~
2
6(O)

for 0 ~ t T, where c is defined by (4.2). The constant C depends only on U in

the above data . Unfortunately  this result  does not state in general to what extent

the projection x ( t )  — E0w (t )  is approximated by a solution of (6 .4) , but if 6 (0 )  0

-40-
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(i.e., if w(0) E H ) ,  then x(t) is actually a solution of ( 6 . 4 ) .  Moreover if S C  K
0

is an attracting set for (6 . 4 ) ,  then {x + V (x) : X E  SI is attracting for (1.4).

Equ ation (6 .2)  expresses the condition tha t the flow direction 4 (w)  be tangent

to M when w E  M. To see this let us define a smooth mapping f : X -r K1 by

f (w) = E
1w — V ( E

0
w)

so that M = f 1( 0 ) .  We may write the condition of tangency as

f ( w ( t) ) = 0

Since M is contained in D , is Well defined for w e M. Appl icat ion of the chain

rule lead s to (6 .2) .

In one sense (6.2) is a small per turbation of (4.3); namely, since dv, 0, and

E0 dO all vanish at the origin the perturbing term may be expected to be small near

zero. On the other hand the new term in (6.2) involves derivatives of V, which makes

an existence proof for (6.2) by a direct perturbation argument problematic. Indeed

this existence question is discussed in (4] in terms of the non—linear semigroup of

transformations generated by 0. Moreover because of the singular nature of this

perturbation, (6.2) does not necessarily admit C solutions. Although there are Ck

solutions for arbitrarily large k, the size of the dmmain of existence decreases as Ic

increases. However , the fact that dv , 0, and E
0 dl’ all vanish at the orig in does

have the following consequence: in computing derivatives of V at the origin from

(6.2), the second term will always contribute to lower order than the first. Thus

for example

_ _ _ _  — 1 2(6.5) 9X
i~

X j 
— —L a

where L 1 
: K1 

-r is a pseudo—inverse and {e.) is a basis for X0
; the same

formula holds for
1 3

There is a minor technical issue to be addressed before the results of 14) are

formally applicable. We must modify (1.4) outside of a neighborhood of zero in order

to ver i fy  the hypotheses of (41 . Let x be a C function with compact support on

— 41—
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a t ’ -  i r  ‘ ‘‘  - l a r I ’ ’ ra - . a ’ a a l  ‘ -~ - I  C ‘
~~~

, a I ‘ - i t  i ’ - r r , _  We nau di fy  ( 1 . 4 )  to n s - .id

= 1~(w) + y ( l
0

w ) N (w )

i s  i t ‘ h a ’ ’ ’ -  a~~ t a , - ,  1*5 I i  r a ’ - , t  w h , - t a  t;w is la r -~s- - It is then a simple matter to

/ C - a  I t  , ‘ ‘ - - , t  rn - i t  ‘ - - n ,’, -‘-I a ii (41 t~~a construct the center manifold . For this verifi es—

t I -  r i  - s b a ’ s - i l - I  t au t , -  a k, ,  fol Jow i n’; fact: N (w) asinish es to second order , so

I - ’,’ a ‘ - ‘ ‘ n  ac  a a r - a  a n’ ‘s i ;  I r a r t  wa may a, rara’p- that jU and its first derivatives

- s r - - a n ‘ - ‘n il I may ha a a , - o , - ’~ - , . a r ’ , . Also if ~ depends smoothly on a finite number of

s r  -a :- - ’ - -a - - is shown in (4) rI - ,t t ta-~~’, rat e r manifold depends Ck_smoothly on those

I s t  - r o t - t  -

rh’- f - a -  P a f a - i t  t I , ’- , ’~ - nt ’ , m a n i fra I -t is Only finitely differentiable would lead to

- - t a - s a n  a ’ -- t a r s - - il --“rn( - }lcOtIors’s if we attempted to apply the center manifold theorem

ha r ’ - ~~t 1 / . The k ’ l  I~~w ata-; Lemm a provides  a r e l a t i o n  between the center manifold and the

I y , ; - s i n - ’r- ’ ; hr, ‘It r ’-~b s a ,- t ia - an ’ ;  that may be exp lo i t ed  to avoid these complications . The

m a t r i x  ‘a in * b C  l eman,i ‘I ’-; - , -ra ’I ’ ;  on rh , parameters B, A,  ID . in the problem bu t we

do t r a P  a r id  i - a t - -  t h i s  ri’-;-’’nden ‘“- “x;- 1 id tly

I , ’ mrra , ~~. I : lh , - , ’-  exist,; a mat r i x—val u ed  funct ion  0~ such that th~ reduced

m - ai r ri ’ ;- a-; arid Ii of formulas ( 4 - 4 )  and ( 6 . 3 )  are related by

h ’ . ~,) 1-1(x) = G(x)
x

14 ’ r ’ - - i’ r ‘j is inver tible and a, — I + 0(x 2 ) .
x X

a r ’ saI r As ‘1 t r -r -hn i ca j  device we introduce addi t ional  parameters into the arguments

- ,f ‘; and I I .  Let us define an extended function $ : D x K0 K by

~(w,y) = 4(w) + y . 
+

W’- r C , h , - f  J~~C al l the functions above to include these extra parameters , indicating the

‘ h - u r s a” w i th a twiddle . Thus for example V : K
0 ~ K0 K1 is defi ned by

P.7) (E
1 

- d v  - E
0
)4(x + V ( x , y ) )  - 

~x’1 ‘ 
~
‘ = ~

• sqk - - ~~~‘- we have used tho relation E
1
y — 0 to discard a term . It turns out that

P . -~ a S ( x ,y )  — G ( x ) + y .

a- .,’
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It is clear from this equation that

(6 .9 )  ( ( x ,y )  : G ( x ,y)  = 01

is a smooth submanifold of K
0 

x K
0
, which is the reason for introducing the additional

parameters.

The fundamental observation in this proof is that G ( x ,y )  = 0 if and only if

FI(x .y )  = 0 - both reductions y ie ld  all rest points of the equation. Therefore each

componen t of H(x ,y) vanishes on the smooth manifold (6.9) , so by Taylor ’s theorem

each such component may be w r i t t en  as a l inear combination (with variable coefficients)

of the fu nctions d e f i n i n g  (6 .9) , namely the components of C itself. In other words

we have

(6.10) ht (x,y) = OxyG (X~
Y)

for some matrix-valued function a,. We obtain (6.6) on restricting (6.10) to y — 0.

The proof that o — I 4 0(x2 ) is based on the computation of various derivatives of

(6.10) indicated below . Given this , it follows that a is invertible for small x.x

The derivatives we shall need f i rs t  are

2—
(6.11) — — 0, d G — I, —

~
--

~~
- — 0

~X . Y ax ay .

fo r x = y = 0. The last two relations are obvious , in view of (6.8) , and the first

follows from (4.4) on observing that

(6.12) E
0 

dl’ — 0

We claim that H sat isf ies the same relations (6. 11). Now

(6.13) H(x,y) = E
0l’(x 

+ V ( x , y ) )  + y

The first two relations in (6.11) follow inriediately from (6.13) by differentiation,

if (6.12) is recalled . As to the third relation in (6.11), we have

(6.14) 
~~~~~ 

— E0
d2l’(e. + ~!_ , ~~!) ,

- 
, aga i n  making use of (6.12) to drop a term. We argue that aV/ay . — 0 as follows.

Differentiate (6.7) with respect to x~ and evaluate at x = y = 0. This yields simply
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v
( 1 . 1 ’ )  F

1 
- r1~’ ;bx

• — 0

a ha ’- t ‘-rita - . a nVi’)lViflq dv . 1~ 
. 

~‘ and dV y do not contribute t~,, (1 , .15) h a a - , - , ii i ’ ; ’ ’ ’sf

(‘- .12) -and hs ’ ’aa ’” y — 0• r ’- s ;”- ’;t , i v ’ -  1/ .  ~ut  . d4 — I- is c r 5 — t o— o n ’  era  /1

f a a -  n b - a s ” -  to which  V ta’,lnan’l’- , so 1V/ bx . = 0. ~imilar 1y ‘Ii ff u - r u- ra t i ation of (i .7)

with r ‘-‘;p ’-’:t to y .  leads to the conc lus ion  ~V/’,)y. 0; i n  th i s  ‘:a-s’- (1,.I’ ) may hi ’

used to drop the last term of ( 6 . 7 ) .  This proves the claim above.

‘ ri d i f f e r e n t i a t i n g  (6 .10) w i t h  respect to y and eva lua t ing  at  x — 1’ — C) we

f ind  t h a t

d l l o  ~~dG ,
y xy

where s’ have discarded a term containing G(0,0 ) ,  which vanishes- It follows from

(6.11) that ‘r = I when x — y = 0. Taking mixed second derivatives of (6.10) yields

tb’ relation

~
x i

her’, we have u~~~d ( c a . 1 l )  to discard one term on the l e f t  and three on the right. There-

fore -a ’ r / ax U at the o r ig i n ,  and the proof is complete .

‘I I  course when the center manifold reduction is implemented for (1.4) in the

‘- ‘ -erd i rs , st es  on X , i n t r o d u c e d  ir a  S4 , the redu ced mapp ing H w i l l  possess the symmetry

(3.2) and the matrix ~ of J essie b.1 will satisfy (3.4).
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~7. Stabilj~~~,~ f t he bifurcating solutions

The goal of the present  section is to verify the stability assignments made in

drawing the bifurcation diagrams of ‘12. We do this by ad hoc arguments which deperad

strongly on the symmetry (1 .13 ) .

The b i f u r c a t ion diagram

(7.1) {(x,)) : H(x ,A ) — 0}

enumerates the equ i l ib r ium solutions of ( 1 . 4 ) .  Here H is the reduced mapp ing on the

center man i fo ld , as def ined  by ( 6 . 3 ) .  In the discussion below we suppress the

dependence of H on alt external parameters , including the bifur cation parameter 1.

According to ~6 the stabili ty or instability of any equilibrium solution of (1.4)

enumerated by (7 .1)  Is determined by the stabili ty or i nst a b i l i t y  of the corresponding

rest point  of the ordinary d i f f e r e n t i a l  equation ( 6 . 4 ) .  However by Lemma 6.1 we may

express H in  terms of G , the reduced mapp ing of the Lyapunov-SchinIdt reduction,

and G In turn may be expressed in terms of the universal unfolding (3.6),

(7.2) G — T F O p

On combining these observations we see that (6.4) may be written

dx
— I i T F  e p ( x )

If we introduce the change of coordinates x ’ — p ( x ) , we may compute that

(7.3) ~~~ — I F ( x ’)

where i = dp a -r . To suziunarize , we saw in §3 tha t the rest points of ( 1 .4)
x x x

may be enumerated by the zeros of F; here we see that the stability properties of

these rest points say also be obtained from F through analysis of (7.3).

The s tabi l i ty or instabil i ty of rest points of (7.3) is of course determined by

the rea l par ts of the eigenvalues of the Jacobian of this equation, which at a zest

point of (7.3) equals T d?. But the stability assiqisnents on the bifurcation diagrams
x

in §2 were mad e by an inspection of the eigenvalues of dF, or in other words, were

m.d~ according to th. stability of

(7.4) ~~~“ F (x)
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Thu~
, ‘,iar P c V ,  i i i  P h 1 - -  - r C - ; . ’n t  , ;, ,s’t  ion ir; to show that the real Jiarts of the eiqenvalucs

b -II- ar ’  W i t  changed by mu l ti jal I — nu t Iran by r~~

Its ’ - b a a n a c  fact we wil l us’- in this derivation is that i satisfIes (3.4), w h i c h
x

t a i I ’ , W s  i r ~~~ a s a b ~-- f~,’-t t ha t  each of the factors in the definition of i satisfies (3.4).
x

i ra P h i ’ -  ( a l - i r a ’’ of symma-t ry (i .f~ - when y = 0) ‘ 
‘

~~~ 

is diagonal. We claim in fact

t I - u t  r h ’ - ~~ 1 a - a s j s a r aa l en t r h ’ - ; of ‘

~~~ 
ar’, both positive in this plane . rt suffices to

io~ k at the orig i n ,  since Tx is non—s i ngular and cannot have a vanish ing  diagonal

‘-ratr y . At the o r ig i n  “ = I and may be ignored . Taking an appropriate mixed deriva—

a s i - - b  (7.2) we find that at the orig in

d = . d dø

‘ n I ’ ~ n r a , -  r a n t s -z e r o  term r e s u l t s  f rom d i f f e r e n t i a t i o n  on the r ight  since F vanishes to

‘ - ‘ s t ad ‘,r’t -r . However it may be seen from (3 .~~a )  that a[~-~-J = I, and d (~~-J is a

- h a - e b s t a l  matrix with entries b
1

, b
2 

given by ( 4 . 1 5 ) ,  both positive . Thus the diagonal

,-nt r a - - s  ‘~f t b _ a-  pr’,dsa’;t 
x 

dii are positive at the origin , and being diagonal , these

m a t ,  i ’: ’- s ’2 ’,m nr a ata, . This proves the above claim. In the following we shall omit the

1 - u r  i r a  ‘r , as we have no further occasion to refer to the individual factors in this
x

m a t r i x .

If  the parameters  c and n in ( 3 . 6 )  have the same sign ,  we claim that (7.31

and (7,4) admit a common hyapunov function, and hence have the same s t ab i l i ty  propert ies .

The Lyapunov function is

(7.5) 4,(x,y) — 
~j— + nx~’

2 + I ~~~~ ~~~!~~~_~
- 8 

+ ax

w b a t - r - ’  c’ — c f V . We suppose that y is small so that c’ and fi also have the

simu- si gn .  To check that (7.5) is a Lyapunov function for ( 7 . 4 ) , we compute that

2 2 2 2rt 2
(7.’.) (F , grad 4,) — (x + fl y + lx  + ii) + ~~ (c ’Xy + (1 + 8)Y)

‘I_ i_ si

(F , grad ~ > ‘ d~ t 2

w b a ’ - r ’ -  u — min(l , 2n/c°), so 4, does indeed increase along the orbits of (7.4). For

* 

-46-

— 
~

- .  ‘ - -
~~~~~, 

- 
~~~~ ~~~~~~~~~~~~~ 

- —

— C~ ~ P t t r.,



(7.3) w’- must compute ( t  F, grad ~ ) .  Let us W r it e  T — t # i ’ , where i is  the
x x 0 x 0

Value of i at the origin. Now a is a positive d e f i n i te , d i a g o n a l  m a t r i x ,  and

i t  is  e a s i l y  seen tha t

(7.7) ( 1
0
F , grad •)  ~

for some appropriately small positive 6 .  On the other hand (T F , grad 4 , >  vanishes

to higher order at the o r i g i n  and may be dominated by (7.7) in a sufficiently small

neighborhood . This proves the above claim and thereby v e r i f i e s  the stability assign-

men ts made for  the three cases 1~~, (U, JIl i
. (Inciden tally since (7.4) admits a

Lyapunov function, no Hopf bifurcation is possible for these cases. Cf. below.)

I t  remains to V e r i f y  the s t ab il i t y  assignments for the two cases I~ and 11(
2
,

in  which  c > 0, tJ — 0. (The case c ‘- 0 , n > 0 does not occur for the problem at

hand .) The bifurcation diagram

{(x ,A ) F(x,I) = 0)

consists of two conic sections, one in the plane of symmetry y — 0 and one in the

plane

(7.8) c x  + 1 + B — 0

We refer to these as the symmetr ic  and asymmetric solutions respectively. The stability

propert ies  of the symmetr i c  solutions present no problem , because in the plane of

symmetry t and dF are diagonal matrices , the entries of ~ being positive; thus

the eigenvalues of dF and of -r . dl’ are real and have the same signs. Our analysis

of the asymmetric solutions is based on the following two facts, proved below. In

these statements lar~e only means close to the boundary of an appropriate neighborhood

of zero.

(7.9) In case 
~~~~ 

the asymmetric solutions are unstable for sufficiently large

neqative I and stable for s u f f i c i e n t l y  large positive 1.

(7. 10) At most one Hop! bifurcation is encountered along the asymmetric branches

as A is increased from large negative values to large positive VC1ueB .
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Assuming (7- ’)) arid ( 7 . 1 1 1 1  L i i . ,  reader may v’.r ify our assignm ents uf I t d b a l l it ’,  i r s

the remaining diagrams if §1 la/ a.i -a r s r a t  t h a i -  various solution branches In from larga-

valai&- s of A , 515 1 ra a~ the ~-r i r i  - api ” of ‘sx’ haara’ja of stability - i t  ha fur cation raoi nts - ‘ii i-

‘--;nent tub idea here  is t b _ u t  t ba ~ - st~ bi L a t.,’ assiqniraera t alo ra ’( a - ; lWaOt_ t a  lararasd of tb ,

1 , 1  li ar ~ a t i a a ra  d iag r a m  - -an  only  ‘di-an ’;e at a liOja f b~ a f u rc at i o n  point , and (7.10) provides

Lii,, necessary control to show that there is a unique assignment p oss ib l e .  For exampl e

ira F i s~iaras 2.40
2 

no Hop f b i f u r c a t i o n  is possible, while in Fi gure 2.4e
1 
a Hopf baafurca-

t ion ifs required . It should ka ~~ mentioned that Figure 2.4b1 
was drawn assuming

1 - 2; a sli ghtly different diagram results if c > 2, and we exclude the a t a s ’;a s r a i - r a t

s - a s ; , -  c = 2 from consideration below .

Both (7.9) and (7.10) follow from the same estimates . On using (7.8) to eliminate

x from the fir st equation in (3.i,) we find that the asymmetric solutions lie on th a i -

r ’ra n I r S  sa e : t  Ian ;

(7.11) y
2 

= 
[—_

i
’~~ — ~ 1-J A

2 
+ ~~~~ ~ + +

Now along the asymmetr i c  solutions

2x + A  —2y
dF —

c ’y 0

Thus dat dF = 2c’y
2 > 0, so both u;igenvalues have real parts of the same s ign ;  the

-same statement holds for i dl’, and we may determine the sign by examination of

a I , ,- t a-as an . A trivial calculation yields

(7.12) tr -r dF = i
11

(2x + 1) + -r
12

(cy ) +

We remind the reader that 1
2 
and 1

21 
are odd functions of y, so that the last

two terms in (7.12) are 0(y2). If we use (7.8) and (7.11) to eliminate x and y

from (7.12) we find that

(7.13) tr TdF — n
ii
{(l — ~~— ) A  + hot)

where terms tha t are of order 12 , a,  or B are called higher order , as the f i r s t

term in (7.13) will domina te the others if the parameters are appropriately restricted .

- 
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In ‘- ase IIl
2~ 

we have 0 ~ c 
- 1, so that the coefficient of I in (7.13)

is neg a t i ve . Thus tr T dF is pos i t i ve  for large negative , i n d i c a t i n g  ei gen-

v a l a ’ - s  w i t h  pos i t ive  rea l  part  or i n s t a b i l i t y  as c l a imed  in ( 7 . 9 ) ; and s i m i l a r l y  for

a Lange positive ‘- . A Hop f bifurcation can occur only if (7.13) vanishes , w h i c h  w i l l

* *
hapr aen fo r  exact ly  one va lue  of 1 , say I . If yields real solutions y Ir~

C. ( 7 . 1 1) t - h a -  associated bifurcation diagram will possess a Hopf bifurcation point; nths-r-

was ’- not.
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